D-A205 959

N ——

UNCLASSIFIED . ¢ i Tk
SECURITY CLASSITIZATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DGCUMENTATION PAGE BEFORE COMPLETEING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.]3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitie) 5. TYPE OF REPORY & PERIOD COVERED
. . . . Ve

Ada Compiler Validation Summary Report: Verdix 1 Feb. 1988 to 1 Feb. 1989
Corporation, VAda-010-2323, Version 5.5, Sequent Balance 5 PERFORMING DRG. REPORT NUMBER
8000 (Host) and (Target), 880201W1.09019 ’ : ‘ ,
+ 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson AFB

Dayton, OH, USA

9. PERFORMING ORGANIZATION AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK

. AREA & WORK UNIT NUMBERS

Wright-Patterson AFB
- Dayton, OH, USA

11. CONTROLLING OFFICE NAME AND ADDRESS o 12. REPORT DATE B
Ada ngnt Program Office . ¢

United States Department of Defense N —WOWETROF PACES
Washington, DC 20301-3081

14, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (of thisreport)

UNCLASSIFIED

Wright-Patterson AFB 15a. EéataaférICATION/DOHNGRADING
Dayton, OH, USA

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17, DISTRIBUTION STATEMENT (of the abmactenreredmBDTleComRepon)
UNCLASSIFIED

ELECTE
MAR 2 3 1983

18. SUPPLEMENTARY NOTES

- - ’

18. KEYWORDS (Continue onreverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and ident:fy by block number)

Verdix Corporation, VAda-010-2323, Version 5.5, Wright-Patterson AFB, Sequent Balance
8000 under Sequent DYNIX, Release 2.1 (Host) to Sequent Balance 8000 under Sequent DYNIX
Release 2.1 (Target), ACVC 1.9.

DD Fomx 1473 ¢0ITION OF 1 NOV 65 1S OBSOLETE
1 3a% 73 S/N £102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

AVF Control Number:

Ada COMPITER
VALIDATION SUMMARY REPORT:
Certificate Number: 880201W1.09019
Verdix Corporation
VAda-010-2323, Version 5.5
Sequent Balance 8000

Completion of On-Site Testing:
1 FEBRUARY 1988

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
washington, D.C. 20301-3081

D
¢

AVF-VSR-120.0988
87-11-17-VRX

Ada Compiler Validation Summary Report:

Compiler Name: VAda-010-2323, Version 5.5
Certificate Number: 880201W1.09019

Host: Target:
Sequent Balance 38000 under Sequent Balance 8000 under
Sequent DYNIX, Release 2.1 Sequent DYNIX, Release 2.1

Testing Completed 1 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

e 52 N Do

Ada Validation Facility

Steve P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH U45433-6503

ke Fllec

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

Ada %%int Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: VAda-010-2323, Version 5.5
Certificate Number: 880201W1.09019

Host: Target:
Sequant Balance 8000 under Sequent Balance 8000 under
Sequent DYNIX, Release 2.1 Sequent DYNIX, Release 2.1

Testing Completed 1 February 1988 Using ACVC 1.9

This report has been reviewed and is approved.

e &N Ao

Ada Validation Facility

Steve P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Ada Validation Organizatio

Dr. John F. Kramer

Institute for Defense A yses
Alexandria VA 22311

Ada Joint Program Office
Virginia L. Castor
Director

Department of Defense
Washington DC 20301

CHAPTER 1

— d o D _a
. -
U Ew)

CHAPTER

n

nn

CHAPTER

w

WWwwwwiwwww
e« * e o e ® & e s e
~N N3OV W N s

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

.

w o -

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT . .
USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES T T T
DEFINITION OF T?RMS C v e e e e e e e e e e
ACVC TEST CLASSES ¢« ¢« 4« ¢« « o o o « s o s o« o

CONFIGURATION INFORMATION

CONFIGURATION TESTED C e e e e e e
IMPLEMENTATION CHARACTERISTICS C e e e e

TEST INFORMATIGN

TEST RESULTS &+ « ¢« v & « + . e e e e
SUMMARY OF TEST RESULTS BY CLASS e s e e
SUMMARY OF TEST RESULTS BY CHAPTER . . .
WITHDRAWN TESTS v ¢ ¢ ¢ o o o o o o o o o« & &
INAPPLICABLE TESTS 4 v « o o o = « = o o o« &
TEST, PROCESSING, AND EVALUATION MODIPICATIONS
ADDITIONAL TESTING INFORMATION . « . « « « .« &
Prevalidation . . ¢ &« ¢ ¢ v ¢ ¢ ¢« ¢ o o & &
Test Method . ¢ . ¢ ¢« ¢ ¢ ¢« v ¢ ¢« v ¢ o & &
B s o

CONFORMANCE STATEMENT
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

. « o .
[VARVIRUIRVURULRVINVSRUS UL RPN)
\

- ek —d 2
1
EWwW NN

1
MEEFTWMNODOND o -

e

CHAPTER 1

INTRODUCTION

- This Validation Summary Report <“V¥SRY describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of..testing this compiler using the Ada Compiler
Validation Capability <€AGVGSY. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
nust be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ahda Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

given in this report.

The information in this report is derived from ths test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. - The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

11

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out'for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
1 February 1988 through 1 February 1988 at Aloha, OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

1.4 DEFINITION OF TERMS

AcvC

Ada
Commentary

Ada Standard

Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983.
The agency requesting validation.

The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established procedures.

The Ada Validation Organization. In the context of this
report, the AVO is responsible for establishing procedures
for compiler validations.

A ﬁrocessor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may 1legitimately
support in a way other than the one expected by the test.

Language The Language Maintenance Panel (LMP) is a committee

Maintenance established by the Ada Board to recommend interpretations and

Panel possible changes to the ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity regarding

a particular feature or a combination of features to the Ada
Standard. 1In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or

1-4

INTRODUCTION

semantic error in the test is detected. A Class B test is passed if every
illegzl construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Fach Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed,

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of 1identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the pacikage REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
rovides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests, These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an

1-5

INTRODUCTION

illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1is validated. A test that 1is
inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not wused in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VAda-010-2323, Version 5.5

ACVC Version: 1.9

Certificate Number: 880201W1.09019

Host Computer:

Machines Sequent Balance 8000
Operating Systemn: Sequent DYNIX, Release 2.1
Memory Size: 4 megabytes

Target Computer:

Machine: Sequent Balance 8000
Operating System: Sequent DYNIX, Release 2.1
Memory Size: 4 megabytes

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler 1in those areas of the Ada Standard that permit implementations
to differ. Class D and § tests specifically check for such implementation
differences. However, tests in other <c¢lasses also characterize an
implementation. The tests demonstrate the following characteristics:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 1levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D6UOOSE..G (2 tests), and D29002K.)

Universal integer calculations.

An implementation 1is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This

implementation processes 64-bit integer calculations. (See tests
D4A002A, DU4AO02B, DUAOOHA, and DUAOOUB.)

Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001C and BB86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E241014.)

. Expression evaluation.
Aprarently nc default initialization expressions for record
components are evaluated hefore any value is checked to belong to

a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C359034.)

Apparently NUMERIC_ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test CU5232A.)

Sometimes NUMERIC_ERROR is raised when a 1literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test CU52524.)

Apparently underflow is not gradual. (See tests CU5524A..Z.)

Rounding.

The method used for rounding to integer 1is apparently round to
even. (See tests CH6012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests CU60124..2.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (Sees test CHAO14A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises no exception. (See test
C360034.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
£52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST

components raises NUMERIC_ERROR when the array subtype is
declared. (See test C5210.i.-.)

2-3

CONFIGURATION INFORMATION

A4 null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, 1lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensionzl array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

« Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record ¢types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expressionts subtype is
compatible with the target's subtype. (See test C520134.)

. Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and CU43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test EU3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

. Representation clauses.
The Ada Standard does not require an implementation to support

representation clauses. If a representation clause is not
supported, then the implementation must reject it.

2-4

i CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types-other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C€35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
suppvorted. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)
Pragnas.

The pragma INLINE is supported for functions and procedures. (See
tests LA3004A, LA3004B, EA300LC, EA3004D, CA300LE, and CA300LF.)

Input/output.

The package SEQUENTIAL IO can be instantiated with wunconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests A.'2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D and CE2102E.)

Modes 1IN _FILE, OUT FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I, and CE2102J.)

2-5

e

CONFIGURATION INFORMATION

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL_IO and DIRECT_IO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to 1last
element written. (See test CE2208B.)

An existing text file can be opened in OUT _FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for SEQUENTIAL_ IO, TEXT_IO, and DIRECT_IO for both reading
and writing. (See tests CE210T7A..I (9 tests), CE2110B, CE2111D,
CE2111H, CE3111A..E (5 tests), CE3114B, and CE3115A.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_IO, DIRECT_ IO, and TEXT_IO. (See test
CE2110B.)

Temporary files are given names and deleted when closed. (See
tests CE2108A and CE2108C.)
. Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, Version 1.9 of the ACVC comprised 3122 tests of
which 24 had been withdrawn. Of the remaining tests, 226 were determined
to be inapplicable to this implementation. Not all of the inapplicable
tests were processed during testing; 201 executable tests that wuse
floating-point precision exceeding that supported by the implementation
were not processed. Modifications to the code, processing, or grading for
24 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 109 1049 1633 17 18 46 2872
Failed 0 0 0 0 ¢] 0 0
Inapplicable 1 2 223 0 0 0 226
Withdrawn 3 2 18 0 1 0 24
TOTAL 113 1053 1874 17 19 u6 3122
3-1

4

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 _3_ 4 5 6 T 8 9 10 11 12 13 14

Passed 190 500 541 245 166 98 142 326 137 36 234 3 254 2872

Failed 6 o o o o0 o o O O O O O O 0

Inapplicable WM 73138 3 0 0 1 1 0 0 O o0 o0 226
Withdrawn 2 13 2 4] 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 99 145 327 137 36 236 U 255 3122

3.4 WITHDRAWN TESTS

The following 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C c340044 C35502P A35902C
c359044 C35A03E C35A03R C37213H C372134J
C37215C C37215E C37215G C37215H c38102C
cliso2a cus61uC ATU106C €85018B C8TBOLUB
CC1311B BC31054A AD1A01A CE24C1H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 (INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 226 tests were inapplicable for the
reasons indicated:

« C35702B wuses LONG_FLOAT which is not supported by this
implementation.

« A39005G uses a record representation clause which is not supported
by this compiler. While record representation clauses are
supported by this compiler, the particular one used by this test
which attempts to represent a Boolean array having four components

3-2

TEST INFORMATION

as four bits is not allowed unless the array type is declared as
packed.

. The following tests use LONG_INTEGER, which is not supported by
this compiler.

cu5231C c4s5304cC clss502C C45503¢C Ch5504C
C45504F cus611C c#5613C cis5631C c4s632C
B52004D C55B07A B55B09C

. CH45531M, CU45531N, C45532M, and CU5532N use fine U8-bit fixed-point
base types which are not supported by this compiler.

. C455310, CU5531P, CU55320, and CU5532P use coarse UB-bit
fixed-point base types which are not supported by this compiler.

. CB86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

. The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
Cis241L..Y (14 tests) CU5321L..Y (14 tests)
CU5421L..Y (14 tests) Ci45521L..Z (15 tests)
CUs5524L..Z (15 tests) CU5621L..Z (15 tests)
c4s5641L. .Y (14 tests) Cl6012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It 1is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made with the approval of the
AVO, and are made in cases where 1legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter
the default size of a collection; splitting a Class B test into sub-tests
so that all errors are detected; and confirming that messages produced by
an executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of aqothev).

3-3

TEST INFORMATION
Modifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B240094 B242044. .C B2A003A..C B333014 B37201A
B380034a B38003B B380094 B38009B B412024
BULOO1A B640OTA B67001A..D B31001H B91003B
B35001A BC1303F BC3C05B

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the VAda-010-2323 compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the VAda-010-2323 compiler using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Sequent Balance 8000 operating under Sequent DYNIX, Release 2.1.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto a MicroVAX II operating
under VMS. The test files were transferred via FTP and Ethernet to the
Sequent Balance 8000 computer used for testing.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and executed (as appropriate) on a Sequent Balance 8000.

The compiler was tested using command scripts provided by Verdix
Corporation and reviewed by the validation team. The compiler was tested
using all switch settings in their default positions.

Tests were compiled, linked, and executed (as appropriate) using a single

computer. Test* output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by

3-4

TEST INFORMATION

the validation team were also archived.

3.7.3 Test Site

Testing was conducted in Aloha OR and was completed on 2 February 1988.

3-5

APPENDIX A

CONFORMANCE STATEMENT

Verdix Corporation has sutmitted the following
conformance statement concerning the VAda-010-2323
compiler.

DECLARATION OF CONFORMANCE

Compiler Implementer: Verdix Corporation
Ada Validation Facility: ASD/SCEL Wright Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: VAda-(010-2323 Version: 5.5
Host Architecture ISA: Sequent Balance 8000 OS&VER #: Sequent DYNIX, Rel 2.1
Target Architecture ISA: Sequent Balance 8000 OS&VER #: Sequent DYNIX, Rel 2.1

Implementer’s Declaration

I, the undersigned, representing Verdix Corporation, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD_1815A in the compiler(s) listed in this declaration.
I declare that Verdix Corporation is the owner of record of
the Ada language compiler(s) listed above and, as such, is
responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made
only in the owner’s corporate name.

%@\%\"& Date: 2—/ S/ &8

Verdix Corporation
Gregory Burns, Project Manager

Owner’s Declaration

I, the unde-signed, representing Verdix Corporation take full
responsibility fur implementation and maintenance of the Ada
compiler(s) listed above, and agree to public disclosure of
the final Validation Summary Report. I further agree to continue
to comply with the Ada trademark policy, as defined by the Ada
Joint Program Office. I declare that all of the Ada language
compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

%m%& Date: 3/ S//ssz

Verdix Corporation
Gregory Burns, Project Manager

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine~dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the VAda-010-2323, Version 5.5, are described 1in the following sections
which discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range ~2_147_U83_648 .. 2_147_U483 647;
type SHORT_INTEGER is range -32768 .. 32767
type TINY_ INTEGER is range -128 .. 127;

type FLOAT is digits 15 range -1.T798E+308 .. 1.798E+308;
type SHORT_FLOAT is digits 6 range -3.403E+38 .. 3.403E+38;

type DURATION is delta 6.1E-05 range -131072.0 .. 131071.9;

end STANDARD;

B-1

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1... INLINE_ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as progma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the gcncranon of a callable
version of the routine which save code space.

12. BUILT_IN Pragma

The BUILT _IN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINE_CODE package.

.

13. SHARE_CODE Pragma

The SHARE_CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.

When the first argument is a generic unit the pragma applies to all instantations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
dation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic instantia-
ton with code generated for other instantiations of the sime generic. When the second argument is
FALSE each instantiation will get a unique copy of the generated code. The extent to which code is

shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

The name pragma SHARE BODY is also recognized by the implementation and has the same effect as
SHARE_CODE. It is included for compatability with earlier versions of VADS,

1.4. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration
types. This eliminates the overhead required to store the array in the executable image.

15. EXTERNAL_NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entty from other
languages. The pragma is allowed at the place of a declarative item i a package specificaton and
must apply t0 an object declared earlier in the same package specification.

1.6. INTERFACE_OBJECT Pragma

The INTERFACE_OBJECT pragma takes the name of aa vanable defined in another language and
allows it 1 be referenced directly in Ada. The pragma will replace all occurrences of the variable
name with an external reference to the second, link_argument. The pragma is allowed at the piace of a
declarative item in a package specification and must apply to0 an object declared earlier in the same
package specificadon. The object must be declared as a scalar or an access type. The object cannot be

B="

any of the following:
a loop variable,
a constant,
an initialized variable,
an amay, or
a record.
1.7. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single -:zument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disai-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON. :

2. Implementation of Predefined Pragmas
2.1, CONTROLLED
This pragma is recognized by the implementation but has no effect.

22. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

23. INLINE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C’ and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the resuit type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argument overrides the default link
name. All parameters must have mode IN. Record and array objects can be passed by reference using
the ADDRESS attribute.

25, LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation but has not effect. The implementation does not
allow SYSTEM to be modified by means of pragmas; the SYSTEM package must be recompiled.

2.7. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

23. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects to be packed at the bit level.

29. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

B-3

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGE_UNIT

This pragma is recognized by the implementation but has no effect. The implementation does not allow
SYSTEM 1o be modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK can-
not be supressed.

2.14. SYSTEM_NAME

This pragma is recognized by the implementation but has no effect. The implementation does not allow
SYSTEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. PPREF
For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address ciause has been given, it refers to
the corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package
MACHINE_CODE. The attribute is only allowed within a machine code procedure.

' (For a package, task unit, or entry, the 'REF attribute is not supported.)

4. Specification Of Package SYSTEM
7“.." SYSTEM

type NAMB {s¢ (bdalamce_dynix);

SYSTEM_NAME : constant NAME := bslance_dysix;
STORACE UNIT : comstant e 83
MEMORY_S1ZE : sonstaat = 16_777_216;

«« System-Dependent Named Numbers

MIN_INT : somstam! = -2_147_483 647 . 1
MAX_INT : eomsfami = 2_l47_483_647;
MAX_DIGITS : comstamt = 13;

MAX_MANTISSA : comatamt = 31

PINE_DELTA : sonstamt e 2,.0°°(-31);

TIXX ' : scomstamt :w 0.01;
-+ Otker System-dapendent Declarations

ssbtype PRICRITY ie INTEGER rsuge O .. 99;
MAX_REC SIZE : tmteger := 64°1024;

type AUDRESS {s private;

NO_ADDR: somstant ADDRESS;

funetion PHYSICAL ADDRESS(I: INTEGER) retara ADDRESS;
{unction ADDR_UT(A, B: ADDRESS) rsturn BOOLEAN;

function ADDR LT(A, B: ADDRESS) return BOOLEAN;

fenction ADDR _GH(A, B: ADDRESS) retara BOOLEAN;

function ADDR_LE(A, B: ADDRESS) restsra BOOLEAN;

fanctios ADDR _DIFP(A, B: ADDRESS) retsrn INTEGER;

fenction INCR_ADDR(A: ADDRESS; INCR: INTEGER) retsra ADDRESS;
(snctios DECR_ADDR(A: ADDRESS; DECR: INTEGER) retmra ADDRESS;

fsnction °>"(A, B: ADDRESS) reiura BOOLEAN renmames ADDR_CT;

function "<*(A, B: ADDRESS) return BOOLEAN renames AILR LT;

fenction ">="(A, B: AIDRESS) retucn BOOLEAN renames ADCR_CE;

fuaction "<a”(A, B: ADDRESS) retura BOOLEAN renames ADDR LE;

fenction "-"(A, B: AUDRESS) rectarn INTEGER renames ADDR_DIFP;

function "+"(A: ADDRESS; INCR: INTEOER) retura ADDRESS renamss INCR_ADDR:
fenction "-"(A: ADDRESS; DECR: INTEGER) rstsra ADDRESS renames DECR_ADDR;

pragm inline(PHYSICAL ADDRESS);
pregem ialine(ADDR_QT);

pregma {aline(ADDR_LT);

prapm inlins(ADDR_GB):

pragmm inline(ADDR_LE);

pragm inline(ADDR _DIFF);
pregmm ioline(INCR_ADDR):
pragmm inlize(DECR_ADIR);

private
type ADDRESS |s aew INTEGER;
no_sddr: comstant sddress := 0;
end SYSTEM:

5. Restrictions On Representation Clauses

5.1. Pragma PACK

Bit packing is not supported. Objects and larger components are packed to the nearest whole
STORAGE_UNIT.

52. Size Specification

The size specification T'SMALL is not supported except when the representation specification is the
same as the value 'SMALL for the base type.

5.3. Record Representation Clauses

Components clauses must be aligned on STORAGE_UNIT boundaries.

B-5

§.4. Address Clauses
Address clauses are supported for variables and constants.

5.5. Interrupts
Interupt entries are supported for UNIX signals. The Ada for clause gives the UNIX signal number.

5.6. Representation Attributes
The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.7. Machine Code Insertions
Machine code insertions are supported.
The general definition of the package MACHINE_CODE provides an assembly language interface for
the target machine. It provides the necessary record type(s) needed in the code statement, an enumera-
tion type of all the opcode mnemonics, a set of register definitions, and a set of addressing mode func-
tons.
The general syntax of a machine code statement is as follows:

CODE _n’(opcode, operand {, operand});
where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODE_N’(opcode, (operand {, operand}));
For those opcodes that require no opcrands, named notation must be used (cf. RM 4.3(4)).
CODE_0’(op => opcode);
The opcode must be an enumeration literal (i.e. it cannot be an object, atribute, or a rename).
An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute.
The arguments to any of the functions defined in MACHINE_CODE must be static expressions, string
literals, or the functions defined in MACHINE_CODE. The 'REF attribute may not be used as an argu-

ment in any of these functions.

Inline expansion of machine code procedures is supported.

B-6

6. Couventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables. Interupt entries are specified with the
number of the UNIX s.2nal :

8. Restrictions on Unchecked Conversions
None.

9. Restrictions on Unchecked Deallocations
None.

10. Implementation Characteristics of 'O Packages

Instantiations of DIRECT IO use the value MAX REC _SIZE as the record size (expressed in
STORAGE_UNITS) when “the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX REC_SIZE is used
instead. MAX RECORD _SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECI'_IO to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE_UNIT bits. DIRECT IO will raise USE_ERROR if
MAX REC_SIZE exceeds this absolute limit.

Instantations of SEQUENTIAL IO use the value MAX _ REC _SIZE as the record size (expressed in
~ STORAGE_UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE SIZE is very large, MAX REC_SIZE is used
instead. MAX _RECORD SIZE is defined in SYSTEM and can be changed by a program before

instandating INTEGER IO to provide an upper limit on the record size. SEQUENTIAL_IO imposes no
limit on MAX_REC SIZB

11. Impiementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available to every program.

111. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.,

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGE_UNITS. A record type or array type
declaration that exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program

is allocated a fixed size stack of 10,24C STORAGE_UNITS. This is the value returned by
T'STORAGE_SIZE for a task type T.

B-7

11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length auribute the default collection size for an access
type is 100,000 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for an access
type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

B-8

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

'1'

L
\%
"
v

$BIG_ID1 1..498 A, 499
Identifier the size of the
maximum input line 1length with

varying last character.

1]
\'%4

'2'

n
v

$BIG_m2 1 . cuge 'A') ugg
Identifier the size of the
maximum input line 1length with

varying last character.

$BIG_ID3 1..249 => 1A', 250 => '3
Identifier the size of the 251..499 => 'aA')
maximum input line 1length with
varying middle character.

$BIG_ID4 1..289 => a7, 250 => 41,
Identifier the size of the 251..499 => A
maximum input line 1length with
varying middle character.

$BIG_INT_LIT 1..496 => '0', 497..499 => m298"
An integer 1literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length,

c-1

TEST PARAMETERS

Name and Meaning

.Y

Value

$BIG_REAL LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the

maximum line length.

$BIG_STRING1
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
literal whose value is
TEXT_IO0.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

$FILE_NAME_ﬂITH_BAD_CHARS
An external file name that
either contains invalid
characters or is too 1long.

$FILE_NAME_WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

1..493 => '0', 4g4.,.499 => "69,0E1"

(1..249 => '7")

(1002”9 => 'A', 250 -"-) '1')

n

v
-
-

~

(1..479

2_147_483_647

2_147_483_647

"/illegal/file name/2{]$%2102C.DAT"

"/illegal/file_name/CE2102C*.DAT"

100_000.0

Name and Meaning

TEST PARAMETERS

Value

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE 'LAST.

$ILLEGAL_EXTERNAL FILE _NAME1
An external file name which
contains invalid characters.

$ILLEGAL | EXTERNAL_FILE NAME2
An external file name which
is too 1long.

$ INTEGER_FIRST
A universal
whose value

integer 1literal
is INTEGER'FIRST.

$INTEGER_LAST
A universal
whose value is

integer 1literal
INTEGER'LAST.

$ INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX IN_LEN
Maximum input line length
permitted by the implementation.

$MAX INT
A universal integer 1literal
whose value is SYSTEM.MAX INT.

$MAX_INT PLUS 1
A universal integer 1literal
whose value is SYSTEM.MAX_INT+1.

10_000_000.0
"/no/such/directory/" &

"ILLEGAL EXTERNAL FILE NAME1"
"/no/such/directory/" &
"ILLEGAL_EXTERNAL_FILE_NAME2"
-2_147_u483 6u8

2_147_483_6u7

2_147_483_648

-100_000.0

-10_000_000.0

15

499

2_147 483 _6UT

2_147_u483_648

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX_IN LEN

long.

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_ IN LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX_IN_LEN, including the quote
characters.

$MIN_ INT
A universal integer 1literal
whose value is SYSTEM.MIN_INT.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT__INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

C-4

(1002 => “2#", 3..“96 => '0',
497..499 => "114")

(1..3 => "16:m, 4,,U495 => 0,
496..499 => "F.E:")

(1..499 => 'A')

-2_147_483_648

TINY_INTEGER

16#FFFFFFFD#

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform ¢to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AT-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) 1incorrectly follows a
later declaration.

. [E28005C: This test requires that "PRAGMA LIST (ON);"™ not appear
in a 1listing that has been suspended by a previous "PRAGMA LIST
(OFF);"; The Ada Standard is not clear on this point, and the

matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINT_ERROR.

« C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

A3£902C: The assignment in line 17 of the nominal uprzr bound of
a fixed-point type to an object raises CONSTRAINT ERROR, for that
value lies outside of the actual range of the type.

. C35904A: The elaboration of the fixed-point subtype on 1line 28
wrongly raises CONSTRAINT_ERROR, because its upper bound exceeds
that of the type.

. C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-point type with a null range,
but the Ada Standard does not support this assumption.

. C37213H: The subtype declaration of SCONS in 1line 100 is
incorrectly expected to raise an exception when elaborated.

\-

WITHDRAWN TESTS

. C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT_ERROR.

. C37215C, C37215E, C€37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type

CONS.

. ©38102C: The fixed-point conversion on 1line 23 wrongly raises
CONSTRAINT_ERROR.

. CH1402A: The attribute 'STORAGE_SIZE is incorrectly applied to an
object of an access type.

. CAU5614C: The function call of IDENT_INT in 1line 15 uses an
argument of the wrong type.

. ATW106C, C85018B, C8TBOUB, and CC1311B: A bound specified in a
fixed-point subtype declaration 1lies outside of that calculated
for the base type, raising CONSTRAINT ERROR. Errors of this sort
occur at 1lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the
four tests, respectively.

. BC3105A: Lines 159 through 168 expect error messages, but these
lines are correct Ada.

. AD1A0VA: The declaration of subtype SINT3 raises CONSTRAINT_ERROR
for implementations which select INT'SIZE to be 16 or greater.

. CE2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

